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turbulence and ICRH 
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The perturbation of the ion density is evaluated using a fluctuating distribution function obtained as solution of the drift 
kinetic equation in passing particle regime. The radio-frequency heating is taking into account by pitch-angle-scattering part 
of the quasilinear radio-frequency operator. The radial variation of ion density perturbation is studied for terms generated by 
both the turbulence and ion cyclotron resonance heating (ICRH). The supplementary term of the ion density perturbation 
obtained here must be included in the quasi-neutrality condition usually used to determine the dispersion relation of the 
instability, crucial in the study of the turbulence.  
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1. Introduction 
 
The issue of anomalous transport in tokamak plasmas 

rests a major problem in physics of plasma fusion [1]. The 
auxiliary heating of plasma using ion cyclotron resonance 
waves is largely adopted in present fusion machine and is 
also previewed for ITER. Consequently, the ion transport 
due to instabilities in the presence of ICRH is of great 
interest [2]. The quasi-neutrality condition represents one 
of the fundamental equations used to describe the transport 
processes in plasma [3]. The goal of this paper is to 
analyse the ion density perturbation of the heated species 
because it enter in the quasi-neutrality equation.  

The paper is organized as follow. In Section 2 the 
perturbed distribution function is written as a solution of 
the kinetic equation in drift approximation in toroidal 
geometry with axisymmetric magnetic field and assuming 
a Maxwell equilibrium distribution function. In Section 3 
is evaluated the density perturbation driven by turbulence 
in absence of ICRH and in Section 4 the density 
perturbation driven by turbulence and ICRH. Relative 
magnitude and variation of different terms in density 
perturbation are discussed in Section 5 and some 
conclusions are presented in Section 6. 

 
 
2. Perturbed distribution function 
 
In this paper we consider non-Ohmic multi-

component plasma which is weakly turbulent due to a 
fluctuating electric field AcE t

rr
δδφδ ∂−−∇= )/1(  and a 

fluctuating magnetic field AB
rr

δδ ×∇= . Consider also that 
one of its species α is heated at the ion cyclotron 
resonance. 
The distribution function is the sum of two contributions: 
one, denoted αF , corresponds to ensemble averaged part 

and the second, denoted αδf , corresponds to the 
fluctuating part of the distribution function.  
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The particle’s velocity v

r  is decomposed as, ⊥+= vbvv
rrr

|| , 

where BBb /
rr

= . The fluctuating part of the distribution 
function αδf  is the sum of a gyrophase averaged part 

denoted αδf  and a gyrophase dependent part ( )γδ αf
~

:   
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The kinetic equation for αδf  in drift approximation is  

( )αααααααα δδδδδδ fQFLfLfvfvf Dt =++∇+∇+∂ ⊥ 0|||| , (3)    
 
where α

0L  is the Lorentz force operator originates from the 

equilibrium, respective αδL  from the fluctuating electro-
magnetic fields, 
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and Q  is the quasi-linear radio-frequency operator. From 
convenience we replace the velocity v

r
 by variables: x , 

the kinetic energy scaled by thermal energy, λ , the ratio 
of magnetic moment to kinetic energy and γ the gyro-
phase angle. In the following we assume equilibrium 
distribution function to be Maxwellian: 
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The perturbed quantity aδ  such as αδf , δφ and A
r

δ  are 
expressed in terms of Fourier integrals 
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where k

r
is the wave vector and ω  is the wave frequency. 

From eq. (3) we obtain (with bkk
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⋅=||
and qeeb /ηθζ

rrr
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where ζθ eeer
rrr ,,  are unit vectors in respective radial, 

poloidal and toroidal directions): 
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In the following we assume an axisymmetric model 
for magnetic field (standard model) defined as in [4]: 
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rB  , where 0/ Rr=η with 0R the major 

radius of the toroidal device, θ  the poloidal angle and q 
the safety factor. In this case, with circular poloidal cross 
section, the smallness of radial component of Dvr  make 
possible to disregard the term with Dr ve

rr
⋅ and keep terms 

with k
r

*ω , despite the drift velocity ( Dvr  contains all the 
particle drift velocities) is much grater than diamagnetic 
velocity involved in k

r
*ω . 

In the absence of heating, 0)( =ωδ kfQ r , integrating eq.(6) 
on obtain in the passing particle regime 
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The first term in the right hand part (rhp) represents the 
adiabatic response. If in the rhp of eq.(7) we use for 

ωδ kf r its solution in preceding order approximation we 
obtain a series development of the solution. Keeping only 
first two terms of this series we have 
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Considering, as a crude approximation, that all quantities 
are constant along the trajectory, we may approximate the 
integral on dl (along the trajectory) by simpler expression 

qRπ  [5] and obtain: 
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3. Density perturbation driven by turbulence 
 
Density perturbation driven by turbulence is obtain 

from the definition 
 

∫= αα δδ fvdnt
r

   (12) 
 
For the Fourier transform of perturbed density we have, 
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ω

α
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r
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Using eqs. (9)-(11) we obtain the density perturbation  
driven by turbulence expressed by the first two terms of a  
series expansion as 
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Here the phase space variables x and λ are defined as  

2

22 1,
2 v

v
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α

α     (16) 

Here the limits of integration on λ correspond to passing 
particle regime and max/1 Bc =λ .  
In the following we introduce notation 
 

r
n

Lr
TL

n
n ∂

∂
−=

∂
∂

−= αα
αη

ln1,ln    (17) 

 
The integration over the variable x is expressed in terms of 
the Gamma function (see for example): 
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where n is an integer and π=Γ )2/1( .    
After direct calculation we obtain from eqs. (15) and (16), 
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with the following estimation of the coefficients: 
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Equation (20) expresses the usual “adiabatic” response 

which in leading order became 
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4. Density perturbation driven by turbulence  
     and ICRH 
 
Fluctuating distribution function dependent on rf 

heating operator is written as 
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In the following we consider the quasilinear radio-
frequency operator expressed by its pitch angle scattering 
part  
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Here the perpendicular diffusion coefficient ⊥D is defined 

as, see for example [6], P
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Here P  is the flux surface averaged absorbed rf 

power density. In the following we assume P  has a 
Gaussian profile [7] given by 
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After direct calculation we obtain the density perturbation 
due to ICRF heating and turbulence in the form 
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For the evaluation of the density perturbation we shall use 
an approximate expression for the dispersion relation [6] 
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where piω  is plasma ion frequency. 
We assume the following ion density and 

temperature profiles, 
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with keV6.80 =iT , 314

0 cm10 −=in , plasma major radius 
cm6200 =R , plasma minor radius cm200=a , resonant 

poloidal angle 9/4πθ =res  at ar = , toroidal magnetic 
field on axis T50 =B .  As a representative order for the 
turbulence frequency we consider kHz100=ω . 
With these parameters values in fig.1 is plotted 0/ PP  

for 1
,|| cm1 −=hk  (dashed line), respective 1

,|| cm2 −=hk  
(solid line). 
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Fig.1. Ratio between the flux surface averaged absorbed 
rf power  density  P  and  its  maximum value 0P   as  
               function of the dimensionless radius. 
 
 
 
5. Discussion 
 
The quaineutrality condition  
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The resultant density perturbation evaluated as 
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In the following the safety factor is assumed monotone 
function on η: 
 

3

3

2

2

4
9

3
225.1

ε
η

ε
η

++=q    (47) 

The coefficient h
esC   given in eq.(29) is plotted in fig.2 for 

two different values of ,||hk . We remark that h
esC  is 

negative for 1
||, cm2.1 −<hk and positive for 1

||, cm3.1 −>hk . 
 

0.05 0.1 0.15 0.2 0.25 0.3
η

-0.4

-0.2

0.2

0.4

Ch
es

 
 

Fig .2. The coefficient h
esC  for 1

,|| cm2.1 −=hk (dashed 

line) and 1
||, cm3.1 −=hk (solid line) with  1cm10 −=θk  

                1cm1 −=ςk  and kHz100=ω . 
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Fig.3. The coefficients esC (solid line), h
esC (small-dash 

line) and t
esC large-dash line) for 1

,|| cm2.1 −=hk with  

    1cm10 −=θk ,   1cm1 −=ςk  and kHz100=ω . 
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The coefficients hCθ , hCς  are very small comparative 

with h
esC , respectively h

es
h CC 610−≈θ  and h

es
h CC 710−≈ς . 

Consequently the effects due to fluctuating vector 
potential are neglectable comparative with electrostatic 
potential fluctuations. 
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Fig.4. The coefficients esC (solid line), h
esC (small-dash 

line) and t
esC (large-dash line) for 1

||, cm3.1 −=hk with 
1cm10 −=θk ,   1cm1 −=ςk  and kHz100=ω . 

 
 

6. Conclusions 
 
The total combined effect of the electrostatic 

turbulence and ICRF heating on the density perturbation 
can be evaluated through esC  given in eq. (42). In figs.(3)-

(4) we plot comparatively esC  (solid line), h
esC (small-dash 

line) and t
esC (large-dash line) for 1

,|| cm2.1 −=hk  and 
1

||, cm3.1 −=hk . The effect of the heating on the density 

perturbation becomes significantly for 1
,|| cm5.1 −>hk  and 

increase rapidly with ,||hk  but varies slowly with θk  and 

ςk .  In the present model based on the drift approximation 
the inductive terms are not very significant. 
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