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The perturbation of the ion density is evaluated using a fluctuating distribution function obtained as solution of the drift
kinetic equation in passing particle regime. The radio-frequency heating is taking into account by pitch-angle-scattering part
of the quasilinear radio-frequency operator. The radial variation of ion density perturbation is studied for terms generated by
both the turbulence and ion cyclotron resonance heating (ICRH). The supplementary term of the ion density perturbation
obtained here must be included in the quasi-neutrality condition usually used to determine the dispersion relation of the

instability, crucial in the study of the turbulence.
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1. Introduction

The issue of anomalous transport in tokamak plasmas
rests a major problem in physics of plasma fusion [1]. The
auxiliary heating of plasma using ion cyclotron resonance
waves is largely adopted in present fusion machine and is
also previewed for ITER. Consequently, the ion transport
due to instabilities in the presence of ICRH is of great
interest [2]. The quasi-neutrality condition represents one
of the fundamental equations used to describe the transport
processes in plasma [3]. The goal of this paper is to
analyse the ion density perturbation of the heated species
because it enter in the quasi-neutrality equation.

The paper is organized as follow. In Section 2 the
perturbed distribution function is written as a solution of
the kinetic equation in drift approximation in toroidal
geometry with axisymmetric magnetic field and assuming
a Maxwell equilibrium distribution function. In Section 3
is evaluated the density perturbation driven by turbulence
in absence of ICRH and in Section 4 the density
perturbation driven by turbulence and ICRH. Relative
magnitude and variation of different terms in density
perturbation are discussed in Section 5 and some
conclusions are presented in Section 6.

2. Perturbed distribution function

In this paper we consider non-Ohmic multi-
component plasma which is weakly turbulent due to a

fluctuating electric field o€ =-V&p—(1/¢)0,0A and a

fluctuating magnetic field 5B = V x 6A . Consider also that

one of its species o is heated at the ion cyclotron
resonance.
The distribution function is the sum of two contributions:

one, denoted F“, corresponds to ensemble averaged part

and the second, denoteddsf“, corresponds to the
fluctuating part of the distribution function.

fo=F*4+&° @)

The particle’s velocity v is decomposed as, V = VHB +V,,
where b =B/B. The fluctuating part of the distribution
function of “ is the sum of a gyrophase averaged part
denoted &F “ and a gyrophase dependent part f “(y):

S*=F"+" ()

The kinetic equation for & ¢ in drift approximation is
O F “ +yV T« vV K+ L +LF =Q(F) ()

where Lj is the Lorentz force operator originates from the

equilibrium, respective SL* from the fluctuating electro-
magnetic fields,

L5 =% E+1Vx§ i , oL =% £+EVX£ i
c oV m, c v
and Q is the quasi-linear radio-frequency operator. From

convenience we replace the velocity v by variables: x,
the Kkinetic energy scaled by thermal energy, A, the ratio
of magnetic moment to kinetic energy and y the gyro-
phase angle. In the following we assume equilibrium
distribution function to be Maxwellian:

a
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The perturbed quantity da such as &%, Sgand SA are

expressed in terms of Fourier integrals
sa=(27)"* [dk [dosa,, explilk - % - ot ®)

where K is the wave vector and @ is the wave frequency.
From eq. (3) we obtain (with k, = k-band b =6 +6,7/q

where € .66 are unit vectors in respective radial,

poloidal and toroidal directions):

of.  eF, a0p eF, -
v, (] a” M © — j(w— a H .
I a I Ta a (w ) T — %% 8*2(0 (6)

a

) . -eF . ox
—i(vk—ay -b) (fl' o, —€ Vo a,k“ +Q(d,)

cT, dInFy
Be, or

In the following we assume an axisymmetric model
for magnetic field (standard model) defined as in [4]:

22
B(r.0)= 2V 9" where ;7 = r/R,with R, the major
1+mncosé
radius of the toroidal device, 6 the poloidal angle and q
the safety factor. In this case, with circular poloidal cross
section, the smallness of radial component of v make

possible to disregard the term with €, -V and keep terms

6 xK) and @, =6, 5

where @, =

with @, , despite the drift velocity (v, contains all the
particle drift velocities) is much grater than diamagnetic
velocity involved in @, .

In the absence of heating, Q(df; )=0, integrating eq.(6)

on obtain in the passing particle regime

e, R edl
I :_(ZT*M‘S%* if V(“"a’o)‘ikw

dle FM - Y

-if d'(vm. D, [,

The first term in the right hand part (rhp) represents the
adiabatic response. If in the rhp of eq.(7) we use for

. its solution in preceding order approximation we

obtain a series development of the solution. Keeping only
first two terms of this series we have

e, R cdl e, R
&, :_TM&%‘ 'Jv(w—%)TM&Ew
o ®
@y -y,

_'I (Vnkﬂ

e.F dle,R
b) ﬁ(u J‘i T "

a

Considering, as a crude approximation, that all quantities
are constant along the trajectory, we may approximate the
integral on dl (along the trajectory) by simpler expression
gR [5] and obtain:

_g0 ®
&, =&, o, ©)
where
40 :_ﬂ 5. (10)
. (w—wD—w~+vlq)e F
o _ [
&lz(x) - IﬂqR V . . 5#(0)
e F H E (1)
—imgR=eM & ..
ﬂq CT a)"k CAW

3. Density perturbation driven by turbulence

Density perturbation driven by turbulence is obtain
from the definition

ong = [ dvet « (12)
For the Fourier transform of perturbed density we have,
e, = [dusts (13)

Using egs. (9)-(11) we obtain the density perturbation
driven by turbulence expressed by the first two terms of a
series expansion as

T Bv/x -
a,0) _ a
oy =—Ar 7T jj xdA — Fue, 08,  (14)
3/2
S0 — 22 qR| 2 dx{da BYx
t,ko q a I I m M
(15)
e — 1 6In F
X{T 1%, ~ cT KAk, + = ( ) 5%)}
Here the phase space variables x and A are defined as
m,_v? 1V
X=—2—, A==-2< 16
2T, BV’ (16)

Here the limits of integration on A correspond to passing
particle regime and A, =1/B,,,,

In the following we introduce notation
oInT 1 olnn

=L e = 17
la "o L or )

n

The integration over the variable x is expressed in terms of
the Gamma function (see for example):
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EN=rar2) @s)

.fdxx”‘“2 exp(-x)=I'(n+1/2) = (2n2 O
0

where n is an integer and T'(1/2) = NE
After direct calculation we obtain from egs. (15) and (16),

a]a, a,(0) a]a,_(l)

tKo — t Ko + tko (19)
na na na

N _

;;kw —-— % c{5¢k.w (20)

(1)
tK sa 3l2r~t o t SN
=4 ICLO, + CLR,

a

+CyoA ] (21)

with the following estimation of the coefficients:

Cl - _‘;—wr(s/z)(l—Jl— B/B,, | 22)

-1 (12, Jrrz)nrera)| o

BL,
cL - gi (kg+%kgj (24)
cl = gi( Cl vk, %kgj (25)
cl - gi[w —‘;’chj (26)
Equation (20) expresses the usual “adiabatic” response
which in leading order became %:(“’O) = -i—:a@w.

4. Density perturbation driven by turbulence
and ICRH

Fluctuating distribution function dependent on rf
heating operator is written as

=] ‘V’—:Q(afgz) 1)

In the following we consider the quasilinear radio-
frequency operator expressed by its pitch angle scattering
part

Qo )= V1-/B 0 ,2D ol —n©, —kv) 0
PAS BT, x a’ 1-/B oA
Here the perpendicular diffusion coefficient D, is defined

as, see for example [6], D, = ;”Qa (P)
n

a a

Here (P) is the flux surface averaged absorbed rf

power density. In the following we assume <P> has a

Gaussian profile [7] given by
(P)=P, explz (’78:#’“)} where 6, is the
n

poloidal angle corresponding to the central vertical axes of
the resonance layer and An is the width of absorption

layer, see for example [9]. We assume for An the

K 2T
expression A =—2 |Z%(1+5c050,,).
o, | m,

The limits of integration of the variable x are
2
Xo ngxc :L with X, :&w
1-B/B, . Ky

After direct calculation we obtain the density perturbation
due to ICRF heating and turbulence in the form

—nQ*‘"— i47°%[Caof,, +CloA, _+CJoA, 1 (28)

a

with
=—aC/ —c(kg —% kgjc; (29)
c/=2tch . ol =Pi(c, ncp)  @0)
R L,
—oC}, CI :—%wc; (31)
2p2 5/2
Co — q R (ma /ZZTIZ) (32)
Bres Xokh,n
ch = 8RB {ir(z, Xo, X, )~ T(L X, X, )} (33)
Ta XO
1
o= ren)Thnn)| @)
0
1 3 3
=Cy| —T(3, %y, X, ) —| 1+ — [['(2, %y, X )+ =L %y, X,
G- Ertaxn)-{1e 2 e k) Sran,n)|
The generalized incomplete gamma function is defined as
(2, %, %)= [t** exp(~t)dt (35)

For the evaluation of the density perturbation we shall use
an approximate expression for the dispersion relation [6]

2
o =n2Q? [1+ O (36)
kh”c
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where w,; is plasma ion frequency.

We assume the following ion density and
temperature profiles,
2 2\?
n =ni0[1—’7—2j, Ti=Ti{1—77—2J (37)
& &

with T,, =8.6keV, n, =10"cm™, plasma major radius
R, =620cm, plasma minor radius a=200cm, resonant
poloidal angle 6,,,=4~/9 at r=a, toroidal magnetic
field on axis B, =5T . As a representative order for the
turbulence frequency we consider o =100kHz .

With these parameters values in fig.1 is plotted (P)/P,

for k,, =lcm™ (dashed line), respective k,, =2cm™
(solid line).

-0.2 -0.1

Fig.1. Ratio between the flux surface averaged absorbed
rf power density (P) and its maximum value Py as
function of the dimensionless radius.

5. Discussion

The quaineutrality condition

> o, =0 (38)

The resultant density perturbation evaluated as

My _ Mz Fois (39)
nﬁ! nﬁt nﬂt
is reading as
Ko _ _icf&%ﬁm

n, Wz

- i4ﬂ.3/2 (Cesé‘aﬁw + C§§K$zw,g + Ceévxfwﬂ)

(40)

with

C. =—aC/ +Cy,ck, +C, ck_ (41)

es

C. =—aC,, —Cyck, 42)

C, =-aC,, —Cyek. (43)
and

c/ :%co , C, :%c; (44)

o =%c{ +%%(C” +7,C;) 45)

Cy, =%c§ —%(cn +7,C) (46)

n

In the following the safety factor is assumed monotone
function on n:

2n® 97’
=125+ ——+—— 47
q PR (47)
The coefficient C[. given in eq.(29) is plotted in fig.2 for
two different values of k,,. We remark that Ch s

negative for k, <1.2cm™and positive for k,, >1.3cm™.
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Fig .2. The coefficient CJ, for k,, =1.2cm™ (dashed
line) and k,, =1.3cm*(solid line) with k, =10 cm™
k. =lcm™ and @ =100kHz .
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Fig.3. The coefficients C, (solid line), CehS (small-dash
ling) and C, large-dash line) for ky, =1.2 cm ™ with

k,=10cm™, k_=lcm™ and @ =100kHz.
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The coefficientsC}), Cgh are very small comparative
withC/. , respectively C, ~10°C) and C!~107Cy.

Consequently the effects due to fluctuating vector
potential are neglectable comparative with electrostatic
potential fluctuations.

§

Nasa38g 885

0.06

Fig.4. The coefficients C, (solid line), C/ (small-dash
line) and C; (large-dash line) for k,, =1.3cm™*with

k, =10cm™, k_=1cm™ and @ =100kHz.

6. Conclusions

The total combined effect of the electrostatic
turbulence and ICRF heating on the density perturbation
can be evaluated through C, given in eq. (42). In figs.(3)-

(4) we plot comparatively C,, (solid line), C2. (small-dash
line) and C. (large-dash line) for Ky =1.2 cm™ and
K =1.3cm™. The effect of the heating on the density
perturbation becomes significantly for k, >1.5cm™ and
increase rapidly with k,, but varies slowly with k, and

k.. In the present model based on the drift approximation
the inductive terms are not very significant.
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